Bräutigam Marcel and Kratz Marie ()
Additional contact information
Bräutigam Marcel: Sorbonne University
Kratz Marie: ESSEC Research Center, ESSEC Business School, Postal: ESSEC Research Center, BP 105, 95021 Cergy, France
Abstract: In this study, we derive the joint asymptotic distributions of functionals of quantile estimators (the non-parametric sample quantile and the parametric location-scale quantile) and functionals of measure of dispersion estimators (the sample standard deviation\, sample mean absolute deviation, sample median absolute deviation) - assuming an underlying identically and independently distributed sample. Additionally, for location-scale distributions, we show that asymptotic correlations of such functionals do not depend on the mean and variance parameter of the distribution. Further, we compare the impact of the choice of the quantile estimator (sample quantile vs. parametric location-scale quantile) in terms of speed of convergence of the asymptotic covariance and correlations respectively. As application, we show in simulations a good finite sample performance of the asymptotics. Further, we show how the theoretical dependence results can be applied to the most well-known risk measures (Value-at-Risk, Expected Shortfall, expectile). Finally, we relate the theoretical results to empirical findings in the literature of the dependence between risk measure prediction (on historical samples) and the estimated volatility.
Keywords: Asymptotic distribution; Sample quantile; Measure of dispersion; Non-linear dependence; VaR; ES; Correlation
JEL-codes: C13; C14; C30; C58; C69; G32
90 pages, December 2018
Full text files
document Full text
Questions (including download problems) about the papers in this series should be directed to Sophie Magnanou ()
Report other problems with accessing this service to Sune Karlsson ().
RePEc:ebg:essewp:dr-18007This page generated on 2024-10-19 15:41:33.