Michael K. Andersson
Additional contact information
Michael K. Andersson: Dept. of Economic Statistics, Stockholm School of Economics, Postal: P.O. Box 6501, S-113 83 Stockholm, Sweden
Abstract: Since the true nature of a time series process is often unknown it is important to understand the effects of model choice. This paper examines how the choice between modelling stationary time series as ARMA or ARFIMA processes affects the accuracy of forecasts. This is done, for first-order autoregressions and moving averages and for ARFIMA 1,d,0) processes, by means of a Monte Carlo simulation study. The fractional models are estimated using the technique of Geweke and Porter-Hudak, the modified rescaled range and the maximum likelihood procedure. We conclude that ignoring long memory is worse than imposing it, when forecasting, and that the ML estimator is preferred.
Keywords: ARFIMA; fractional integration; periodogram regression; rescaled range; maximum likelihood; forecast error
15 pages, February 26, 1998
Full text files
hastef0225.pdf.zip Full text
hastef0225.pdf Full text
hastef0225.ps.zip PostScript file Full text
hastef0225.ps PostScript file Full text
Questions (including download problems) about the papers in this series should be directed to Helena Lundin ()
Report other problems with accessing this service to Sune Karlsson ().
RePEc:hhs:hastef:0225This page generated on 2024-09-13 22:19:41.